[[K-monoid]]
# Clifford algebra
Let $(V, Q)$ be a [[quadratic space]] over $\mathbb{K}$.
The **Clifford algebra** $\opn{Cl}(V,Q)$ is the freëst [[K-monoid]] generated by $V$ subject to the condition to #m/def/falg/geo
$$
\begin{align*}
v^2 = Q(v)1
\end{align*}
$$
as formalized by the [[#universal property]].
[[Away from 2]], this is equivalent to the freëst unital associative algebra such that the [[anticommutator]] extends the [[Quadratic form|polar form]]
$$
\begin{align*}
\{ v,w \} = vw + wv = b_{Q}(v,w)1
\end{align*}
$$
This motivates yet another perspective: $\Cl(V,Q)$ is the freëst unital associatve algebra whose [[Anticommutator|associated Jordan algebra]] $A^+$ has a product extending $b_{q}$,
i.e. $A^{+ 1/2}$ has a product extending $(-)\cdot (-)$.
In a sense the Clifford algebra generalizes, or rather _quantizes_ the [[Exterior algebra]].
It is sometimes called the **orthogonal Clifford algebra**, as opposed to the related [[Weyl algebra]] which is sometimes called the **symplectic Clifford algebra**.
## Universal property
Let $(V,Q)$ be a [[quadratic space]] over $\mathbb{K}$.
The associated **Clifford algebra** is a pair consisting of a [[K-monoid]] $\Cl(V,Q)$ and a [[linear map]] $\iota : V \to \Cl(V,Q)$ with the identity $\iota(v)^2 = Q(v)1$
such that given any unital associative algebra $A$, a linear map $f : V \to A$ satisfying $f(v)^2 = Q(v)1$ factorizes uniquely through $\iota$
<p align="center"><img align="center" src="https://i.upmath.me/svg/%0A%5Cusetikzlibrary%7Bcalc%7D%0A%5Cusetikzlibrary%7Bdecorations.pathmorphing%7D%0A%5Ctikzset%7Bcurve%2F.style%3D%7Bsettings%3D%7B%231%7D%2Cto%20path%3D%7B(%5Ctikztostart)%0A%20%20%20%20..%20controls%20(%24(%5Ctikztostart)!%5Cpv%7Bpos%7D!(%5Ctikztotarget)!%5Cpv%7Bheight%7D!270%3A(%5Ctikztotarget)%24)%0A%20%20%20%20and%20(%24(%5Ctikztostart)!1-%5Cpv%7Bpos%7D!(%5Ctikztotarget)!%5Cpv%7Bheight%7D!270%3A(%5Ctikztotarget)%24)%0A%20%20%20%20..%20(%5Ctikztotarget)%5Ctikztonodes%7D%7D%2C%0A%20%20%20%20settings%2F.code%3D%7B%5Ctikzset%7Bquiver%2F.cd%2C%231%7D%0A%20%20%20%20%20%20%20%20%5Cdef%5Cpv%23%231%7B%5Cpgfkeysvalueof%7B%2Ftikz%2Fquiver%2F%23%231%7D%7D%7D%2C%0A%20%20%20%20quiver%2F.cd%2Cpos%2F.initial%3D0.35%2Cheight%2F.initial%3D0%7D%0A%25%20TikZ%20arrowhead%2Ftail%20styles.%0A%5Ctikzset%7Btail%20reversed%2F.code%3D%7B%5Cpgfsetarrowsstart%7Btikzcd%20to%7D%7D%7D%0A%5Ctikzset%7B2tail%2F.code%3D%7B%5Cpgfsetarrowsstart%7BImplies%5Breversed%5D%7D%7D%7D%0A%5Ctikzset%7B2tail%20reversed%2F.code%3D%7B%5Cpgfsetarrowsstart%7BImplies%7D%7D%7D%0A%25%20TikZ%20arrow%20styles.%0A%5Ctikzset%7Bno%20body%2F.style%3D%7B%2Ftikz%2Fdash%20pattern%3Don%200%20off%201mm%7D%7D%0A%25%20https%3A%2F%2Fq.uiver.app%2F%23q%3DWzAsMyxbMCwwLCJWIl0sWzIsMCwiXFxvcGVyYXRvcm5hbWV7Q2x9KFYsUSkiXSxbMiwyLCJBIl0sWzAsMSwiXFxpb3RhIl0sWzAsMiwiZiIsMl0sWzEsMiwiXFxleGlzdHMhIFxcYmFyIGYiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0%3D%0A%5C%5B%5Cbegin%7Btikzcd%7D%0A%09V%20%26%26%20%7B%5Coperatorname%7BCl%7D(V%2CQ)%7D%20%5C%5C%0A%09%5C%5C%0A%09%26%26%20A%0A%09%5Carrow%5B%22%5Ciota%22%2C%20from%3D1-1%2C%20to%3D1-3%5D%0A%09%5Carrow%5B%22f%22'%2C%20from%3D1-1%2C%20to%3D3-3%5D%0A%09%5Carrow%5B%22%7B%5Cexists!%20%5Cbar%20f%7D%22%2C%20dashed%2C%20from%3D1-3%2C%20to%3D3-3%5D%0A%5Cend%7Btikzcd%7D%5C%5D%0A#invert" alt="https://q.uiver.app/#q=WzAsMyxbMCwwLCJWIl0sWzIsMCwiXFxvcGVyYXRvcm5hbWV7Q2x9KFYsUSkiXSxbMiwyLCJBIl0sWzAsMSwiXFxpb3RhIl0sWzAsMiwiZiIsMl0sWzEsMiwiXFxleGlzdHMhIFxcYmFyIGYiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=" /></p>
such that $\bar f: \Cl(V,Q) \to A$ is a [[Algebra homomorphism|unital algebra homomorphism]].
This admits a unique extension to a [[functor]] $\Cl : \cat{QVect}_{\mathbb{K}} \to \cat{UAsAlg}_{\mathbb{K}}$ such that $\iota : 1 \Rightarrow \Cl : \cat{QVect}_{\mathbb{K}} \to \Vect_{\mathbb{K}}$ becomes a [[natural transformation]].
## Construction
The Clifford algebra may be constructed as a [[quotient algebra]] of the [[tensor algebra]]
$$
\begin{align*}
\opn{Cl}(V,Q) = \frac{T^\bullet V}{\langle v \otimes v - Q(v) : v \in V \rangle_{\trianglelefteq T^\bullet V} }
\end{align*}
$$
where the divisor is the [[algebra ideal]] generated by tensors of the form $v \otimes v - Q(v)1$.
> [!missing]- Proof of the universal property
> #missing/proof
## Relation to the exterior algebra
The [[exterior algebra]] is the [[associated graded algebra]] of the Clifford algebra, whence there is a [[Natural linear isomorphism between filtered algebra and associated graded algebra|natural linear isomorphism]] between them.
With this identification, we have
$$
\begin{align*}
\bigwedge_{j=1}^k v_{j} = \frac{1}{k!} \sum_{\sigma \in S_{k}} \sgn(\sigma) \prod_{j=1}^k v_{j}
\end{align*}
$$
We carry over all the terminology, referring to $k$-vectors, &c.
#
---
#state/develop | #lang/en | #SemBr